

Task 53 - 7th Expert meeting in Messina 12-13 April 2016

Activities A5-1 and A5-2 LCA and techno-eco comparison between reference and new systems

Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo University of Palermo – DEIM

!!! For developing the action, the contribution from all partners is needed. In detail, information and data on reference systems and existing thermal and PV solar cooling systems, as well as on storage systems, should be collected by partners and will be used to carry out the techno-economic and LCA analyses.

Techno-economic analysis

The analysis should be performed for all the systems examined in this action (systems installed in Palermo and Messina, system from TECSOL, etc.).

The analysis for the two systems installed in Palermo (Freescoo and Air handling unit desiccant cooling) will start in the next months, based on the technical and economic KPI identified in the Activity A5-2.

LCA analysis

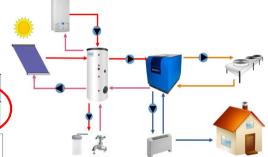
Developed actions: UNIPA is carrying out the following LCA studies:

- FREESCOO: the LCA is completed
- <u>Air Handling Unit Desiccant Cooling (AHU-DEC) equipped with a hybrid photovoltaic/thermal (PV/T) system</u>: analysis of the manufacturing and end-of-life steps is completed.

The assessment of the operational step is in progress.

Air handling unit desiccant cooling (AHU-DEC)

FREESCOO



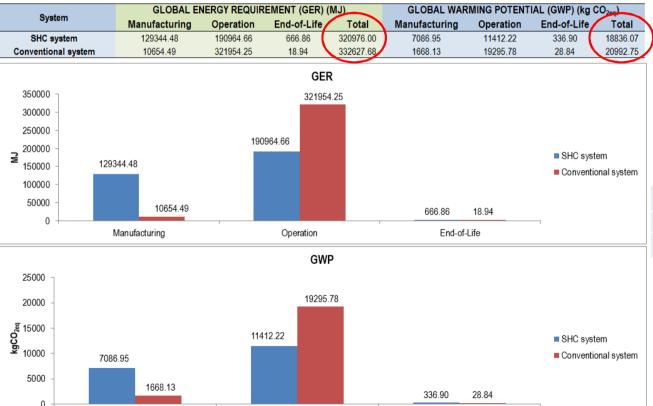
LCA analysis

Developed actions: UNIPA is carrying out the following LCA studies:

• SHC system installed in Messina (adsorption chiller): the LCA is completed.

0	GLOBAL EI	NERGY REQUIR	REMENT (GER) (MJ)	GLOBAL WARMING POTENTIAL (GWP) (kg CO _{2eg})			
System	Manufacturing	Operation	End-of-Life	Total	Manufacturing	Operation	End-of-Life Total	
SHC system	129273.23	127309.78	666.86	257249.87	7083.97	7608.15	336.90 15029.0	2
Conventional system	10654.49	214636.17	18.94	225309.60	1668.13	12863.85	28.84 14560.8	3
			GEF	₹				
250000			214636	5.17				
200000 -								
150000 -	129273.23	127	' 309.78				■ SHC system	
≧ 100000 -							■ Conventional system	n
50000 -							,	
00000	10654.49				666.86	18.94		
0 +	Manufacturing	,	Operation		End-of	-Life		
			GW	D				
14000 ¬			12863	85				
12000 -								
10000 -								
8000 - 6000 -	7083.97	760	08.15				-0110	
<u>දු</u> 6000 -							■ SHC system	
4000 -							■ Conventional system	n
	1668.13							
2000 -						00.04		
0					336.90	28.84		

Energy Payback Time	=	13.66	year
GWP Payback Time	=	10.89	year
Energy Return Ratio	=	0.67	


End-of-Life

LCA analysis

Manufacturing

Developed actions: UNIPA is carrying out the following LCA studies:

SHC system installed in Messina (adsorption chiller): the LCA is completed.

Operation

Energy Payback Time	=	13.66	year
GWP Payback Time	=	10.89	year
Energy Return Ratio	=	1.00	

Other potential LCA analyses

We are waiting for new contributions to perform the LCA

LCA analysis

Develop actions: UNIPA is carrying out literature review of LCA studies on thermal and PV existing solar cooling systems. The literature studies will be summarized by using a format already developed within Task 38.

Results: The literature review is in progress.

Literature review of LCA studies on thermal and PV existing solar cooling systems

12 literature studies

- 1. Product
- 2. Authors and reference
- 3. Description of the product
- 4. Product characteristics
- 5. Metadata
- 6. Life Cycle Inventory
- 7. Product Eco-profile
- 8. Primary energy saving and avoided emissions
- 9. Payback indexes

Activity A5-2: Definition of Key Performance Indicators (KPI) of the market available systems and possible characterization test method (permitting to lead to a quality labeling scheme for new generation solar cooling systems) as well as standards.

Energy indicators

Global Energy Requirement (MJ)
Energy payback time (years)
Energy return ratio (a-dimensional)

Economic indicators

Money savings during the operation (€)
Initial cost ratio
Operation/maintenance costs ratio
Payback period (years)

Social indicators

Customer satisfaction (qualitative)
Ease of use of the systems (qualitative)

Environmental indicators

Global Warming Potential (kg CO_{2eq})
Acidification Potential (kg SO_{2eq})
Eutrophication Potential (kg $PO_4^{3-}_{eq}$)
Ozone Depletion Potential (kg CFC-11_{eq})
Photochemical Ozone Creation Potential (kg C_2H_{4eq})
GWP payback time (years)

Technical indicators

Useful life of the system (years)
Thermal Performance Coefficient (COP_{th}) of
the ab/adsorption machine
Solar Electric Performance Coefficient
(COP_{Elec-sol}) of the system
Reliability of the system (%)

Activity A5-2: Definition of Key Performance Indicators (KPI) of the market available systems and possible characterization test method (permitting to lead to a quality labeling scheme for new generation solar cooling systems) as well as standards.

FORMAT FOR KEY Global Warming Potential

Key performance indicator name: Global Warming Potential (GWP)

Typology (economic, energy or environmental, social, technical): Environmental indicator

Type of assessment (qualitative or quantitative): Quantitative

Unit of measure (only for quantitative KPI): kg CO_{2eq}

Description: GWP is a measure of the relative, globally averaged, warming effect arising from the emissions of a particular greenhouse-gas. The GWP represents the time-integrated commitment to climate forcing from the instantaneous release of 1 kg of a trace gas expressed relative to that from 1 kg of carbon dioxide.

Performance target: % reduction of GWP during the life-cycle of the system (to be fixed case by case)

Measurement process: Life Cycle Assessment methodology

Activity A5-2: Quality labeling scheme

QUALITY LABEL SCHEHL TOSK 53 (

Picture of the system The system (insert a picture of the system) (invort a brief description of the system) **Energy KPIs Environmental KPIs** GER (MJ): GWP (kq CO2,q): EPT (years): AP (kq S02,4): ERR: EP (kq PO, 5,): ODP (kq CFC-11,4): POCP (kq C2H4+4): GWP-PT (year): **Economic KPIs** Social KPIs MSDO(I): CS: ICR (I): EUS: OMC (I): PP (years): **Technical KPIs** ULS (years): COPIL: COPERTORIS RS(%):

Key of KPIs

Energy indicators: Global Energy Requirement (GER); Energy Payback Time (EPT); Energy Return Ratio (ERR);
Environmental indicators: Global Warming Patential (GWP); Acidification Patential (AP); Eutrophication Patential (EP);
Ozone Depletion Patential (ODP); Photochemical Ozone Creation Patential (POCP); GWP Payback Time (GWP-PT);
Economic indicators: Maneysavings during the operation (MSDO); Initial contratio (ICR); Operation/maintenance contratio
(OMO); Payback period (PP);

Social indicators: Curtomors atisfaction (CS); Ears of we of the system (EUS);

Technical indicators: Useful life of the system (ULS); Thermal performance coefficient of the ab/advorption machine (COPth); Salar Electric Performance Coefficient of the system (COPElectrol); Reliability of the system (RS).

Activity A5-2: Quality labeling scheme

	SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY QUALITY LABEL SCHEME TOSK 53 NEW GENERATION SOLAR COOLING & HEATING SYSTEMS								
Picture of	the system	The s	ystem						
(insert à pictur	re of the system)	(insert a brief desc	ription of the system)						
	10 10	18	o en						
Energ	y KPIs	ENVIRONIN	nental KPIs						
GER (MJ):		GWP (kg CO _{Zeq}):							
EPT (years):		AP (kg SO _{2eq}):							
ERR:		EP (kg PO ₄ 3- _{eq}):							
		ODP (kg CFC-11 _{eq}):							
		POCP (kg C ₂ H _{4eq}):							
		GWP-PT (year):							

Activity A5-2: Quality labeling scheme

Econo	mic KPIs	Socia	l KPIs
MSDO (€):		CS:	
ICR (€):		EUS:	
OMC (€):			
PP (years):			
	Techni	cal KPIs	
ULS (years):		
СС	P _{th} :		
СОР	Elec-sol-		
RS	(%):		
	Кеу с	of KPIs	
Environmental indicators: Glob Depletion Potential (ODP); Phot Economic indicators: Money sa Payback period (PP); Social indicators: Customer sat Technical indicators: Useful life	y Requirement (GER); Energy Payba al Warming Potential (GWP); Acid ochemical Ozone Creation Potenti- vings during the operation (MSDO isfaction (CS); Ease of use of the sy e of the system (ULS); Thermal perfo t of the system (COPElec-sol); Relia	ification Potential (AP); Eutrophica al (POCP); GWP Payback Time (GW); Initial cost ratio (ICR); Operation stem (EUS); ormance coefficient of the ab/adso	ation Potential (EP); Ozone /P-PT); n/maintenance costs ratio (OMC);

Update of the LCA tool developed within Task 48

The LCA tool developed within Task 48 has been updated.

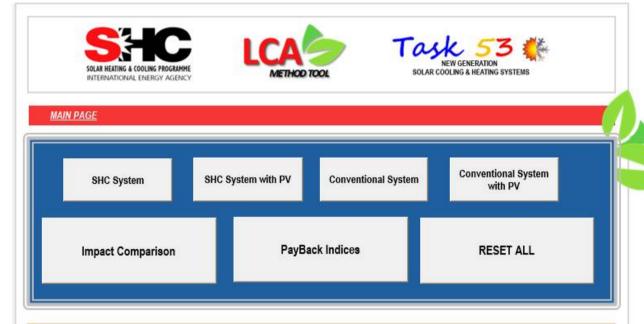
What is new?

- -New design and functionality (non-editable equations, component selection from a drop down menu, enter new data, export in PDF of each page, etc.);
- -Some new components have been added: 2 heat pumps (10 kW, 30 kW); 1 absorption chiller (100 kW) and air cooler;
- -Comparing 4 different systems simultaneously: SHC, SHC equipped with PV, conventional, conventional equipped with PV.

The test of the tool is ongoing

Points for discussion

- Beta-testing by external users
- Intellectual property of the tool


Update of the LCA tool developed within Task 48

! Recommendation for users: please note that this tool must be used only for academic and research activities

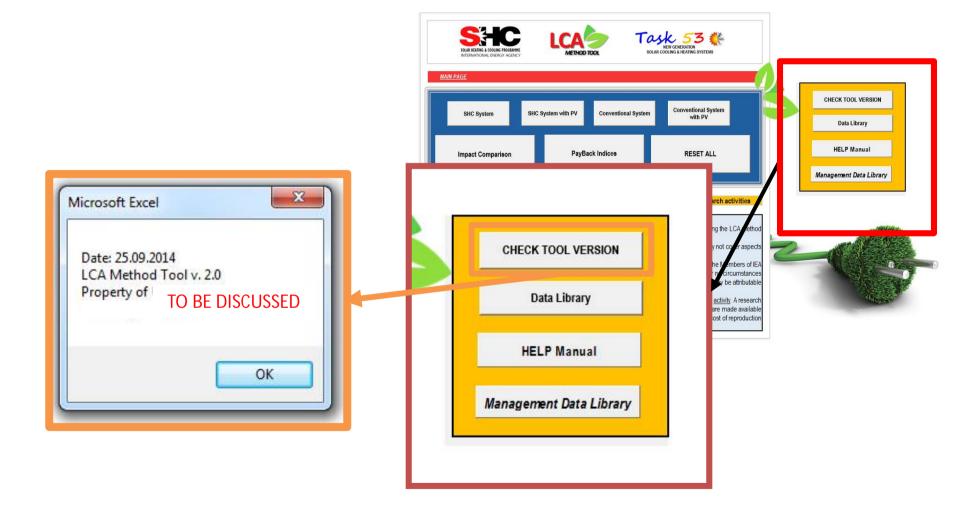
Disclaimer LCA method tool

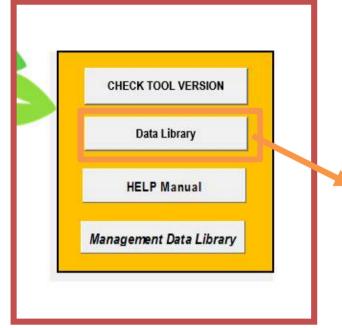
This License Agreement is a legal agreement for the LCA method tool. By installing, copying or otherwise using the LCA method tool, you agree to be bound by the terms of this Agreement.

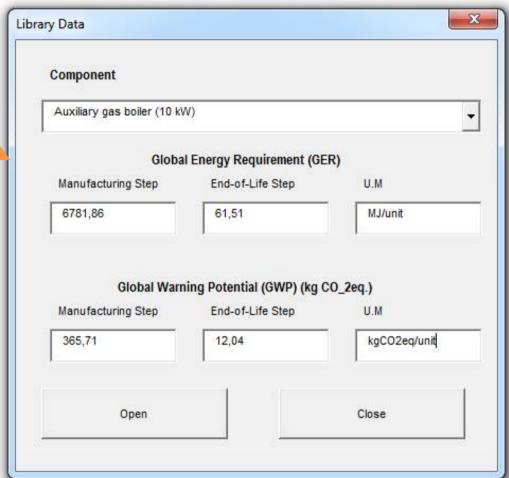
This calculator tool is not intended to provide specific advice or recommendations in any circumstances. It may not cover aspects of your particular situation and an investigation with different tools could produce a different result.

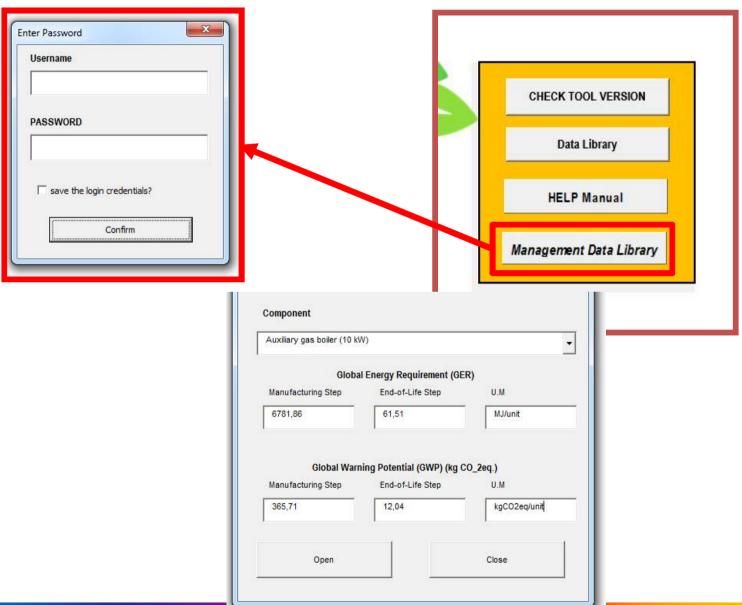
The Members of IEA Task 48 assumes no responsibility for any errors or omissions within the calculator tool. The Members of IEA Task 48 makes no representation or warranty of any kind whatsoever with respect to this calculator tool. Under no circumstances shall the Members of IEA Task 48 be held liable for any loss or damage (including any type of damage), which may be attributable to the reliance on and use of the calculator tool.

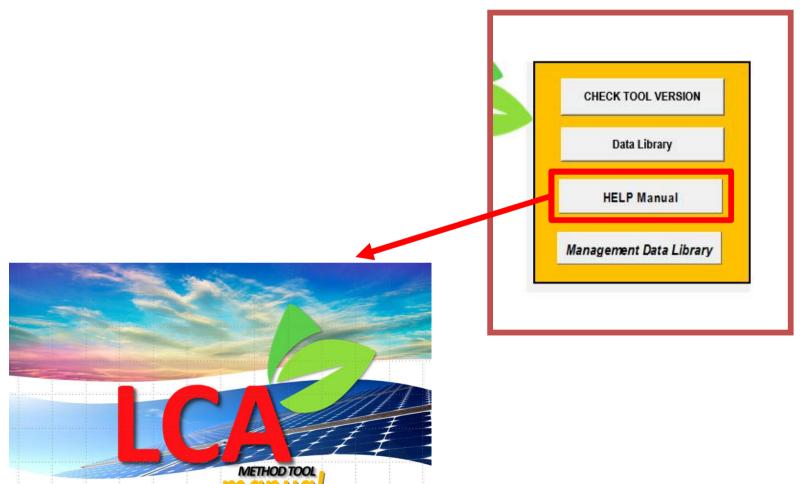
This License Agreement authorizes use of the calculator tool only for teaching and non-commercial research activity. A research activity is considered non-commercial only if its results are not intended primarily for the benefit of a third party, are made available to anyone without restriction on use, copying, and further distribution, and are furnished at no more than the cost of reproduction and shipping.

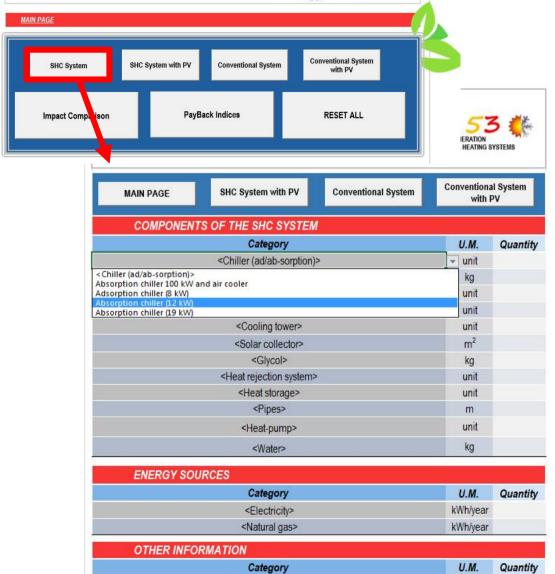




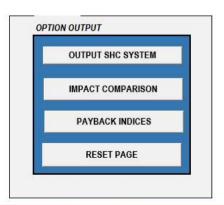








year



Useful life of the system

INPUTS

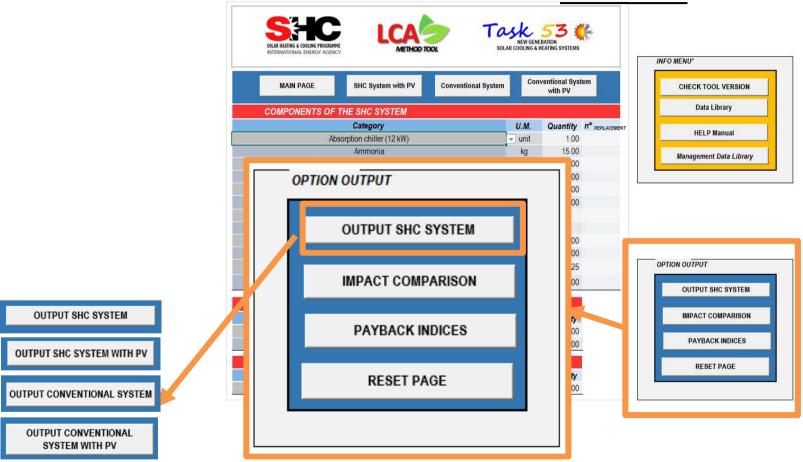
INPUTS

MAIN PAGE	SHC System with PV Conventional S	System	entional Syst with PV	em
COMPONENTS OF	THE SHC SYSTEM			
	Category	U.M.	Quantity	n° REPLACEMEN
A	bsorption chiller (12 kW)	unit	1.00	
	Ammonia	kg	15.00	
Auxilia	unit	1.00		
Aı	unit	1.00		
	unit	1.00		
E	m ²	35.00		
	kg			
	unit			
	unit	1.00		
	Heat storage (2000 I) Pipes (m)			
	unit	8.25		
	Water	kg	10.00	
ENERGY SOURCE	S			
	Category	U.M.	Quantity	
Electricity,	Electricity, low voltage, Italy (including import)			
Natural gas, burne	ed in boiler modulating, <100 kW, Europe	kWh/year	414.00	19
OTHER INFORMA	TION			
	Category	U.M.	Quantity	
	Useful life of the system	year	25.00	

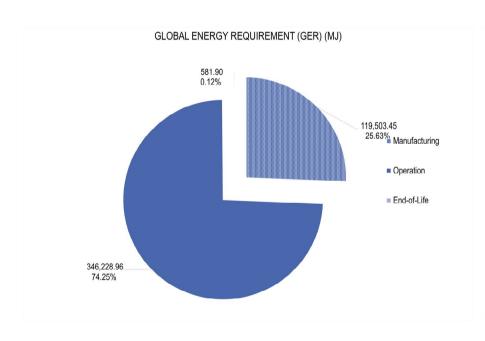
INPUTS

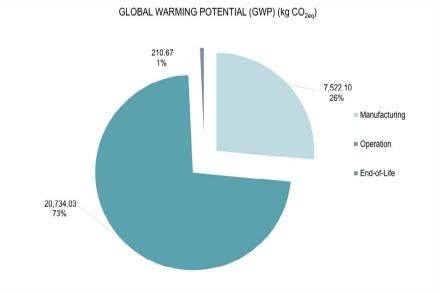
Category	U.M.	Quantity
<chiller (ad="" ab-sorption)=""></chiller>	unit	
<ammonia></ammonia>	kg	
Auxiliary Conventional Chiller>	unit	
<auxiliary boiler="" gas=""></auxiliary>	unit	
<cooling tower=""></cooling>	unit	
<solar collector=""></solar>	m ²	
<glycol></glycol>	kg	
<heat rejection="" system=""></heat>	unit	
<heat storage=""></heat>	unit	
<pipes></pipes>	m	
<heat-pump></heat-pump>	unit	
<water></water>	kg	

COMPONENTS OF THE SHC SYSTEM WITH PV		
Category	U.M.	Quantity
<chiller (ad="" ab-sorption)=""></chiller>	unit	
<ammonia></ammonia>	kg	
<auxiliary chiller="" conventional=""></auxiliary>	unit	
<auxiliary boiler="" gas=""></auxiliary>	unit	
<cooling tower=""></cooling>	unit	
<solar collector=""></solar>	→ m²	
<glycol></glycol>	kg	
<heat rejection="" system=""></heat>	unit	
<heat storage=""></heat>	unit	
<pipes></pipes>	m	
<heat-pump></heat-pump>	unit	
<water></water>	kg	
<battery></battery>	kg	
<electric installation=""></electric>	unit	
<inverter></inverter>	unit	
<photovoltaic panel=""></photovoltaic>	m ²	

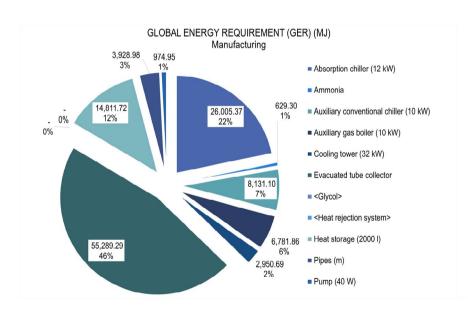

COMPONENTS OF THE CONVENTIONAL SYSTEM		
Category	U.M.	Quantity
<chiller (conventional)=""></chiller>	unit	
<gas boiler=""></gas>	unit	
<pipes></pipes>	m ²	
<pump></pump>	unit	
<heat-pump></heat-pump>	m ²	

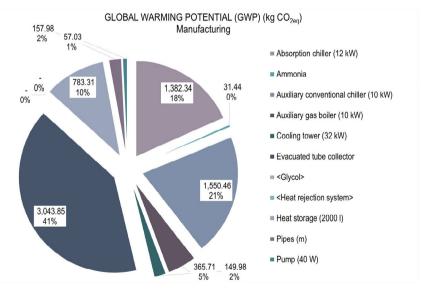
Category	U.M.	Quantity
<battery></battery>	kg	
<chiller (conventional)=""></chiller>	unit	
<electric installation=""></electric>	unit	
<gas boiler=""></gas>	unit	
<inverter></inverter>	unit	
<photovoltaic panel=""></photovoltaic>	m ²	
<pipes></pipes>	m ²	
<pump></pump>	unit	
<heat-pump></heat-pump>	m ²	


COMPONENTS OF THE SHC SYSTEM	GLOBA	L ENERGY REQ	VIREMENT (GER) (MJ)	GLOBAL WARMING POTENTIAL (GWP) (kg CO 1)			
	Manufacturing	Operation	End-of-Life	Total	Manufacturing	Operation	End-of-Life	Total
Absorption chiller (12 kW)	26,005.37		3.13	26,008.50	1,382.34		12.55	1,394.89
Ammonia	629.30			629.30	31.44			31.44
Auxiliary conventional chiller (10 kW)	8,131.10		7.83	8,138.93	1,550.46		25.82	1,576.28
Auxiliary gas boiler (10 kW)	6,781.86		61.51	6,843.37	365.71		12.04	377.75
Cooling tower (32 kW)	2,950.69		10.74	2,961.43	149.98		3.13	153.11
Evacuated tube collector	55,289.29		454.37	55,743.66	3,043.85		137.94	3,181.78
<glycol></glycol>								
<heat rejection="" system=""></heat>								
Heat storage (2000 I)	14,811.72		21.32	14,833.04	783.31		12.71	796.02
Pipes (m)	3,928.98		19.92	3,948.90	157.98		5.82	163.80
Pump (40 W)	974.95		3.09	978.04	57.03		0.66	57.69
Electricity, low voltage, Italy (including import)		299,835.66		299,835.66		17,970.14		17,970.14
Natural gas, burned in boiler modulating, <100 kW, Europe		46,393.30		46,393.30		2,763.89		2,763.89
Totale	119,503.45	346,228.96	581.90	466,314.31	7,522.10	20,734.03	210.67	28,466.80

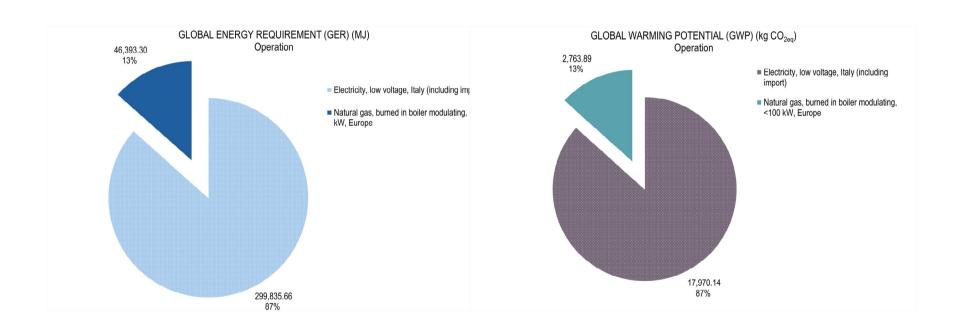


DOMINANCE ANALYSIS FOR THE LIFE CYCLE OF THE SHC SYSTEM

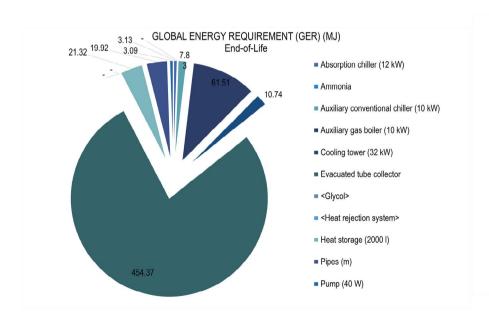


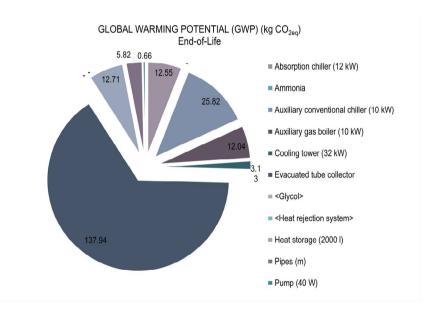


DOMINANCE ANALYSIS FOR THE MANUFACTURING OF THE SHC SYSTEM

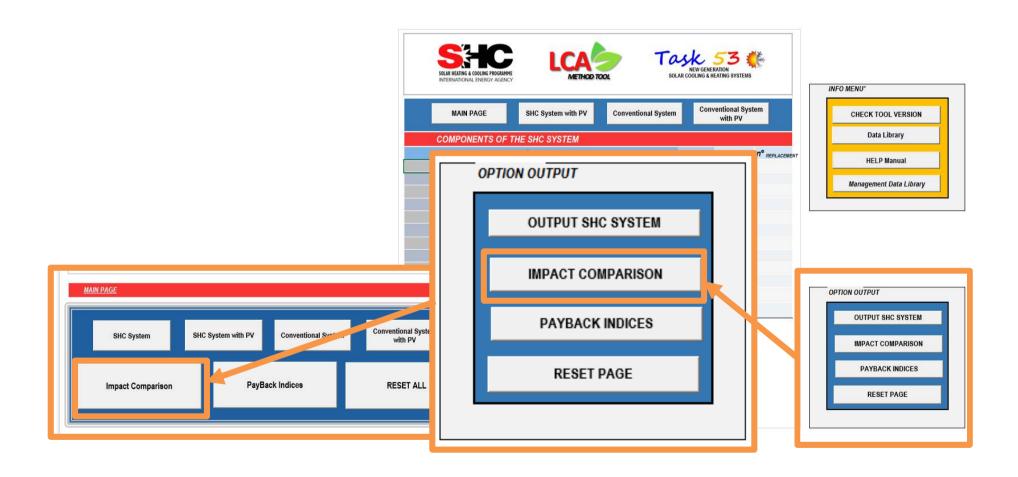


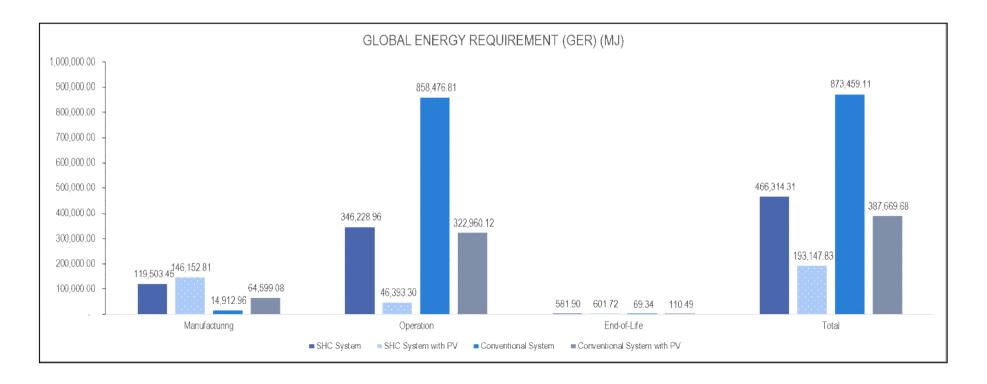
DOMINANCE ANALYSIS FOR THE OPERATION OF THE SHC SYSTEM



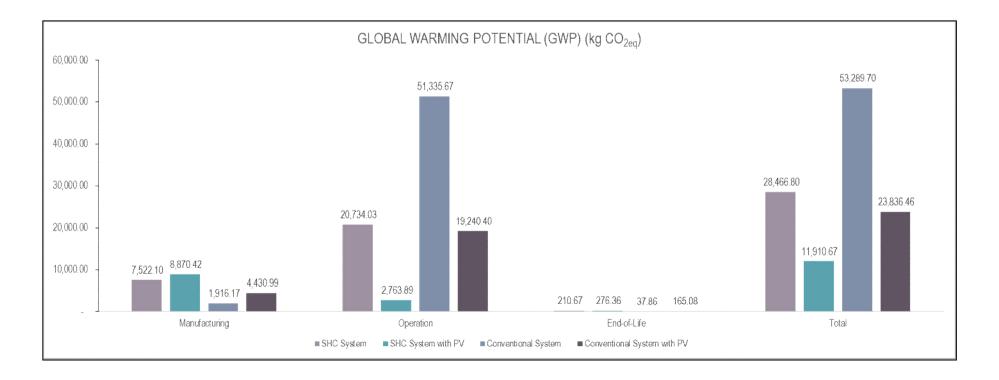


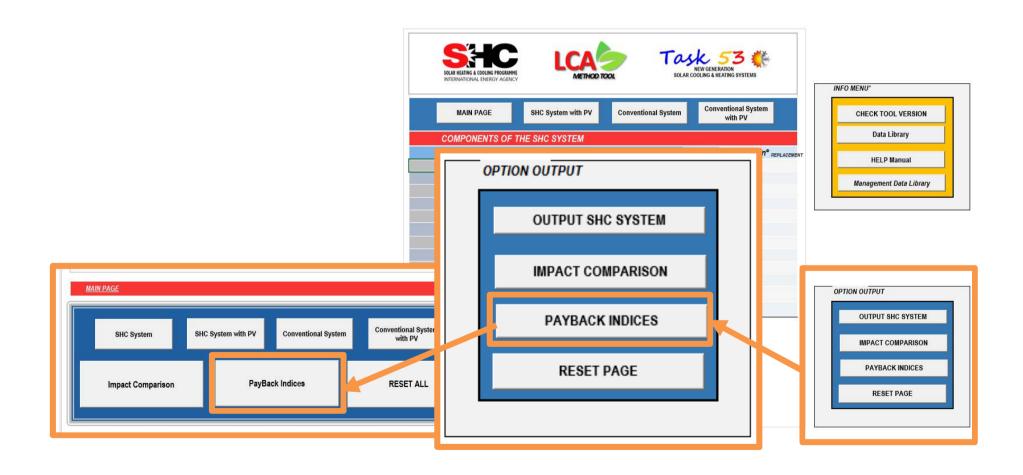
DOMINANCE ANALYSIS FOR THE END-OF-LIFE OF THE SHC SYSTEM





SYSTEM	GLOBAL ENERGY REQUIREMENT (GER) (MJ)				GLOBAL WARMING POTENTIAL (GWP) (kg CO 2eq)			
	Manufacturing	Operation	End-of-Life	Total	Manufacturing	Operation	End-of-Life	Total
SHC System	119,503.45	346,228.96	581.90	466,314.31	7,522.10	20,734.03	210.67	28,466.80
SHC System with PV	146,152.81	46,393.30	601.72	193,147.83	8,870.42	2,763.89	276.36	11,910.67
Conventional System	14,912.96	858,476.81	69.34	873,459.11	1,916.17	51,335.67	37.86	53,289.70
Conventional System with PV	64,599.08	322,960.12	110.49	387,669.68	4,430.99	19,240.40	165.08	23,836.46




SYSTEM	GLOBAL ENERGY REQUIREMENT (GER) (MJ)			GLOBAL WARMING POTENTIAL (GWP) (kg CO 2eq)			g CO _{2eq})	
	Manufacturing	Operation	End-of-Life	Total	Manufacturing	Operation	End-of-Life	Total
SHC System	119,503.45	346,228.96	581.90	466,314.31	7,522.10	20,734.03	210.67	28,466.80
SHC System with PV	146,152.81	46,393.30	601.72	193,147.83	8,870.42	2,763.89	276.36	11,910.67
Conventional System	14,912.96	858,476.81	69.34	873,459.11	1,916.17	51,335.67	37.86	53,289.70
Conventional System with PV	64,599.08	322,960.12	110.49	387,669.68	4,430.99	19,240.40	165.08	23,836.46

Energy Payback Time

Energy Payback Time is defined as the time during which the SHC system must work to harvest as much primary energy as it requires for its manufacturing and end-of-life. The harvested energy is considered as net of the energy expenditure for the system use.

	Energy Payback Time		
	Conventional System Conventional System		
	Energy Payback Time=(GER; esimo, SHC:system - GER; esimo, Conventional-system)/Eyear		
SHC System	5.13	- 59.5	
SHC System with PV	4.06	7.4	

Energy Return Ratio

Energy Return Ratio represents how many times the energy saving overcomes the global energy consumption due to the SHC system or the SHC system with PV.

	Energy Re	eturn Ratio
	Conventional System	Conventional System with PV
	Energy Return Ratio =E _{Overalise}	simo,SHC-system /GERj-esimo,SHC-system
SHC System	4.27	- 0.19
SHC System with PV	5.53	1.88

GWP Payback Time

GWP Payback Time is defined as the time during which the avoided GWP impact due to the use of the SHC system or the SHC system with PV is equal to GWP impact caused during its manufacturing and end-of-life.

	GWP Payback Time		
	Conventional System Conventional System v		
	GWP Payback Time =(GWP _{j-esimo,SHC-system} - GWP _{j-esimo,Conventional-system})/GWP _j		
SHC System	4.72	- 52.50	
SHC System with PV	3.70	6.90	

Summary of Values					
	Manufacturing and End-o	f-Life		Operating Use	
SYSTEM	GER	GWP	GER	GWP	years
1 SHC System	120,085.35	7,732.77	346,228.96	20,734.03	25.00
2 SHC System with PV	146,754.53	9,146.78	46,393.30	2,763.89	25.00
3 Conventional System	14,982.30	1,954.03	858,476.81	51,335.67	25.00
4 Conventional System with PV	64,709.56	4,596.07	322,960.12	19,240.40	25.00

×

NOTE		
	E _{year}	
	Conventional System	Conventional System with PV
SHC System	20,489.91	- 930.75
SHC System with PV	32,483.34	11,062.67

NOTE		
	GWP _{year}	
	Conventional System	Conventional System with PV
SHC System	1,224.07	- 59.75
SHC System with PV	1,942.87	659.06

NOTE		
	EOverall	
	Conventional System	Conventional System with PV
SHC System	512,247.85	- 23,268.85
SHC System with PV	812,083.51	276,566.82

OUTPUTS

Energy Payback Time

Energy Payoack Time is defined as the time during which the SHC system must work to harvest as much primary energy as it requires for its manufacturing and end-of-life. The harvested energy is considered as net or its energy expenditure for the system use.

Exergy Payback Time		
Conventional System	Conventional System with PV	
Energy Payback Time=(GER _{j-esimo,SHC-s}	system - GER i-esimo:Conventional-system)/Eyear)

GWP Payback Time

GWP Payback Time is defined as the time during which the avoided GWP impact due to the use of the SHC system or the SHC system with PV is equal to GWP impact caused during its manufacturing and end-of-life.

	GWP Payback Time		
	Conventional System Conventional System		
	GWP Payback Time =(GWP _{j-esimo,SHC-system}	- GWP iesimo:Conventional-system V/GWP year	
SHC System	4.72 -		
SHC System with PV	3.70	6.9	

Energy Return Ratio

Energy Return Ratio represents how many times the energy saving overcomes the global energy consumption due to the SHC system or the SHC system with PV.

<u>j</u>	Energy Return Ratio Conventional System Conventional System		
	Energy return Ratio =E _{Overalise}	sim SHC-system /GERj-esimo,SHC-system	
SHC System	1.27	0.19	
SHC System with PV	5.53	1.88	

THANK YOU FOR YOUR ATTENTION

Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo

Dipartimento di Energia, Ingegneria dell'Informazione e Modelli Matematici Università degli Studi di Palermo Viale delle Scienze Ed.9, 90128 Palermo, Italy