eurac research

Modelling results on New Generation Solar Cooling systems

Chiara Dipasquale

INTRODUCTION

<u>4 examples of new generation solar cooling systems:</u>

- Building description and solar cooling plant layout;
- Working modes and characteristics of system components;
- Operational modes and system size variants, and results.

CASE 1

Building description

Reference Single Family House - SFH

euracresearch Task 53 🐇

Reference Small Multi Family House - sMFH

Number of floors	2
Living area per floor	50 m²
Yearly heating demand	45 kWh/(m²y)

Number of floors	5
Living area per dwelling	50 m²
Number dwelling per floor	2
Yearly heating demand	45 kWh/(m²y)

Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

CASE 1

Solar cooling plant layout

- Use of solar thermal energy for DHW production and space heating
- Use of **PV energy** for the HVAC system electricity consumption

- **1**. Solar thermal collectors
- 2. PV panels
- 3. Air-to-water heat pump
- 4. Storage tank
- 5. Buffer
- 6. DHW distribution circuit
- 7. H&C Distribution circuit

TES charging by solar energy

TES charging by heat pump

euracresearch Task 53 🔅 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

Buffer charging by heat pump

euracresearch Task 53 🐇 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

Buffer charging by solar energy

DHW distribution

euracresearch Task 53 👯 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

ST and PV performance with varying field size and tilt angle

	Solar Thermal		
	Unit	s-MFH	
STC_1	m²	18.4	
STC_2	m²	27.6	
STC_3	m²	36.8	

ROM – Rome

STO - Stockholm

Solar Fraction and stagnation hours referred to the total heating production (**space heating** + **DHW**)

euracresearch Task 53 🏶 cr

Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

ST and PV performance with varying field size and tilt angle

	Solar Thermal		
	Unit	s-MFH	
STC_1	m²	18.4	
STC_2	m²	27.6	
STC_3	m²	36.8	

	Photovoltaic		
	Unit	s-MFH	
PV_1	kWp	3	
PV_2	kWp	4	
PV_3	kWp	5	

ROM – Rome

STO - Stockholm

euracresearch Task 53 🐇

■ SF ROM ■ SF_STO ■ Hour_ROM ○ Hour_STO

PV production and self-consumption for two different fields size and panel slope

Solar Fraction and stagnation hours referred to the total heating production (space heating + **DHW**)

euracresearch Task 53 🔅 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

RESULTS – CASE 1

ST and PV performance for different sizes and slopes

Comparison of similar field areas of STC (**27 m**²) or PV (**24 m**²) in terms of electric energy savings for DHW, heating and cooling uses Slightly higher energy savings in Southern climates due to higher cooling loads

 Same energy savings for a solar thermal (STC) or photovoltaic (PV) field in Northern climates

CASE 2 Building description

Wooden Residential Building (WRB)

Number of floors	2
Living area per floor	130 m²

Athens (EL)
Almeria (ES)
Barcellona (ES)
Larnaca (CY)
Luca (MT)
Marseille (FR)
Messina (IT)
Freiburg (DE)
Stuttgart (DE)

CASE 2 Solar cooling plant layout

- Adsorption chiller for space cooling;
- Solar collectors (CPC) for heating and DHW demands
- Heat rejection through dry-cooler.

- **1**. Compound Parabolic Collectors (CPC)
- 2. Storage tank 1000 l
- 3. Electric Heater
- 4. Adsorption chiller 10 kW
- 5. Dry cooler
- 6. Fan coil

Running the solar system

Space cooling mode

Running the back-up heater

Domestic Hot Water and space heating

Absorption chiller in different climates

	# solar collectors	SPF heating [-]	SPF cooling [-]	SF total [%]	PER total [-]
Freiburg	6	6.7	5.2	51%	1.2
Stuttgart	6	9.5	7.9	56%	1.3
Marseille	6	11.6	9.6	92%	1.9
Messina	8	14.8	12.3	67%	2
Luca	8	14.3	13.0	66%	2
Athens	8	10.4	10.9	69%	2.4
Barcelona	8	12.9	11.7	73%	2.4
Almeria	8	10.7	11.8	66%	1.9
Larnaca	10	11.9	12.7	63%	2.1

• The highest SF is in Marseille where heating and cooling demands are similar;

Absorption chiller in different climates

	# solar collectors	SPF heating [-]	SPF cooling [-]	SF total [%]	PER total [-]
Freiburg	6	6.7	5.2	51%	1.2
Stuttgart	6	9.5	7.9	56%	1.3
Marseille	6	11.6	9.6	92%	1.9
Messina	8	14.8	12.3	67%	2
Luca	8	14.3	13.0	66%	2
Athens	8	10.4	10.9	69%	2.4
Barcelona	8	12.9	11.7	73%	2.4
Almeria	8	10.7	11.8	66%	1.9
Larnaca	10	11.9	12.7	63%	2.1

- The highest SF is in Marseille where heating and cooling demands are similar;
- Northern climates have low SF due to small collector size and high heating demand;

Absorption chiller in different climates

	# solar collectors	SPF heating [-]	SPF cooling [-]	SF total [%]	PER total [-]
Freiburg	6	6.7	5.2	51%	1.2
Stuttgart	6	9.5	7.9	56%	1.3
Marseille	6	11.6	9.6	92%	1.9
Messina	8	14.8	12.3	67%	2
Luca	8	14.3	13.0	66%	2
Athens	8	10.4	10.9	69%	2.4
Barcelona	8	12.9	11.7	73%	2.4
Almeria	8	10.7	11.8	66%	1.9
Larnaca	10	11.9	12.7	63%	2.1

- The highest SF is in Marseille where heating and cooling demands are similar;
- Northern climates have low SF due to small collector size and high heating demand;
- Although Northern climates are not the best application for adsorption chillers, all the cases have PER (Primary Energy Ratio) > 1 and Solar Fraction > 60%

CASE 3 Building description

TheBat Building (Task 44)

Number of floors	2
Living area per floor	70 m ²
Yearly heating demand	45 kWh/(m²y)

Location: Innsbruck (Austria)

CASE 3 Solar cooling plant layout

Use of PV for covering the heat pump consumption:

- **1.** SELF consumption;
- 2. Overheating the TES;
- **3.** Overheating the TABS;
- 4. Overheating TES and TABS.
- **1.** PV PV panels $-20 \text{ m}^2 40 \text{ m}^2$
- 2. HP Heat pump 10 kW
- 3. DHW Domestic Hot Water
- 4. SH Space heating
- 5. TES Thermal Energy Storage
- 6. TABS Thermal Activated Building Structure

TES charging for space heating use

euracresearch Task 53 🌾 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

Direct space heating from the heat pump

SPF and HP performance at different working conditions

The strategy of overheating the TES reduces the HP performance (SPF_{el,HP}) because of the higher working temperatures;

SPF and HP performance at different working conditions

- The strategy of overheating the TES reduces the HP performance (SPF_{el,HP}) because of the higher working temperatures;
- Overheating the BUI and the TES+BUI increases the thermal losses;

SPF and HP performance at different working conditions

- The strategy of overheating the TES reduces the HP performance (SPF_{el,HP}) because of the higher working temperatures;
- Overheating the BUI and the TES+BUI increases the thermal losses;
- Bigger PV field area and storage capacity reduce the used energy from the grid, but increase energy losses;
- **Bigger storages** do not significantly improve the system performance.

CASE 4 Building description

Multi-family house HVACviaFaçade

Number of floors	3
Living area per dwelling	50.3 m ² (average)
Dwellings per floor	4
Yearly heating demand	15 kWh/(m²y) – BUI 15
Yearly heating demand	30 kWh/(m²y) – BUI 30

Location: Graz (Austria)

CASE 4 Layout description

Central outdoor air heat pump

Decentralized outdoor air heat pump

Direct electric heating

CASE 4 - 1

euracresearch Task 53 🐇

Layout description and working conditions

 Maximize PV production for the centralized heat pump electric consumption;

- Use of **decentralized storages for DHW** uses;
- Use of **two set temperatures** for the tanks.

- 1. PV panels 189 m² 15.75 m²/dwelling
- 2. Heat pump 10 kW (BUI 15) 20 kW (BUI 30)
- **3**. Buffer Tank 1500 I (BUI 15) 2000 I (BUI 30)
- 4. DHW tank 150 l/dwelling
- 5. Mechanical Ventilation with Heat Recovery

CASE 4 - 2

Layout description and working conditions

Decentralized outdoor air heat pump

euracresearch Task 53 👫

- Maximize PV production for the **decentralized heat pumps** consumption;
- Use of **decentralized storages for DHW** uses;
- Use of **two set temperatures** for the tanks.

- 1. PV panels 176 m² 14.5 m²/dwelling
- 2. Heat pump 2 kW/dwelling
- 3. Direct space heating from the heat pump
- 4. DHW tank 150 l/dwelling
- 5. Mechanical Ventilation with Heat Recovery

CASE 4 - 3

Layout description and working conditions

- Maximize **PV production** for self-use;
- Use of **two set temperatures** for the tank;
- Use of the **roof surface** for additional PV panels.

- 1. PV panels 1 176 m² 14.5 m²/dwelling
- 2. PV panels 2 419 m² 34.9 m²/dwelling
- 3. Electric heater 2.5 kW and 150 l
- 4. Mechanical Ventilation with Heat Recovery

Direct electric heating

• SCOP is slightly lower in cases with a PV field due to the higher working temperatures

- The highest SPFs are encountered in the decentralized configuration;
- However, a low energy demanding building with a big PV field has a high SPF.

RESULTS – CASE 4

SPF and SCOP

• SCOP is slightly lower in cases with a PV field due to the higher working temperatures

- The highest SPFs are encountered in the decentralized configuration;
- However, a low energy demanding building with a big PV field has a high SPF.

- Self-consumption accounts for one third to a half of the total production.
- The excess of electricity fed into the grid is high in all cases, with exception of the direct heating with small PV field

Generation Solar Cooling systems

RESULTS – CASE 4

SPF and SCOP

CONCLUSIONS

- Solar driven systems can assume different configurations, from the PV coupled to a heat pump for heating production to the integration of solar thermal collectors for decreasing thermal loads to the use of sorption chillers for the cooling loads;
- When designing a solar energy system, the solar field size is key, in fact bigger solar thermal fields can cause stagnation problems and in PV systems the self-consumption can be only a small fraction of the produced energy (20% to 30%);
- Solar technologies have good results in terms of solar fraction and SPF also in northern climates thanks to the longer winter season and the inclination of solar radiation in this period.
- The use of thermal storages can help to maximize the use of solar energy also in combination with PV systems.

eurac research

THANK YOU

Chiara Dipasquale – chiara.dipasquale@eurac.edu

www.eurac.edu
http://task53.iea-shc.org/